M = 15 82

DECLASSIFIED

Dygart, Page 1

This document has been det classified by authority of issuing instal a. on. Letter doted by his board by the control of the co

W-7401-eng-49

MEDICAL SECTION ROCHESTER LEEA

PHARMACOLOGY DIVISION
INHALATION SECTION
H. E. Stokinger, Chief of Section

Report #7

RELATIVE EFFICIENCIES OF DUST SAMPLING DEVICES AS APPLIED TO THE COLLECTION OF T-DUSTS

H. P. Dygert R. Sunford H. Oberg, T/4

CASALION

This document contains in the odd a ca define in the Atomic Energy Act of Sounder affects it National Defense of the United Color its from mittal of the disclosure of its original in an arms.

manner to an unauthorized person prohibited and may result in severe penalties under applicable

This report has been photostated to fill your requests as our supply of copies was exhausted. If you should find that you do not need to retain this copy permanently in your files, we would greatly appreciate your returning it to TIS so that it may be used to fill future requests from other AEC installations.

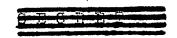
November 22, 1944

RELATIVE EFFICIENCIES OF DUST SAMPLING DEVICES
AS APPLIED TO THE COLLECTION OF T-DUSTS

ABSTRACT

As a result of tests of 8 types of sampling apparatus as well as 9 filter papers in collecting T-dusts (median particle-size: approximately 0.6%, concentration: 20 mg per cubic meter), the Filter Paper Dust Sampler with a suitable filter paper proved most efficient. This conclusion was based upon

- a) the greater efficiency of the Filter Paper Dust Sampler as compared with that of the glass electrostatic precipitator, the Midget or Greenburg-Smith Impinger;
- b) the ease of sampling;
- c) the accuracy and ease of weighing;
- d) the ease of analysis;
- e) the uniformity of results;
- f) the inexpensiveness of construction and operation.


H-45 paper was superior to all filter papers tested. The usefulness of this paper was limited, however, by the difficulty encountered in analysis, so that in practice Whatman Paper #41 employed in the Brass Filter Paper Dust Sampler was the device of choice when chemical as well as gravimetric analyses of T-dust are desired.

Signed H. P. Dygerti

22 November 1944

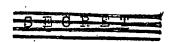
Pharmacology Report #7

RELATIVE EFFICIENCIES OF DUST SAMPLING DEVICES AS APPLIED TO THE COLLECTION OF TEDUSTS

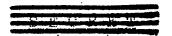
Although the efficiency of a number of dust sampling devices is generally known, their effectiveness in collecting T-dusts of known concentration and particle-size has not been investigated. The purpose of this study was to determine the relative efficiency of some commercially used dust-samplers and that of certain less well-known devices, as well as some of the new filtering media in collecting T-dusts. The sampling apparatus and media were tested on three T-dusts: "Hi-Grade" T-ore (Section I), TF_L (Section IIA) and TO₂F₂ (Section IIB).

Materials and Methods

The 8 types of sampling apparatus and 9 filter papers tested are listed below:


Sampling Apparatus

- Brass Filter Paper Dust Sampler
- Filter Paper Mask Sampler
 Wooden Filter Paper Dust Sampler
- Glass Electrostatic Precipitator "Standard" Glass Electrostatic Precipitator, Long Model
- Neilson Filter Paper Dust Sampler
- Greenburg Impinger
- Midget Impinger


Filter Papers

- Whatman #41 6. H-42
- Whatman #42 7. H-45
- Whatman #50
- Balston #50
- OR-1661-A
- Brass Filter Paper Dust Sampler (FPDS) was modeled after that used by Fairhall and consisted of 2 machine-faced metal surfaces between which a weighed circular piece of filter paper was held by screwing the parts together. The whole was inserted into the wall of the dust chamber and attached to a suction airline with controlled flow. Figure 1 shows the scale drawing of the FPDS.

Public Health Bulletin #253.

Dygert, page 4

- 2. Filter Paper Mask Sampler (FPMS) was similar in design and principle to that of the FPDS and was used in attachment with a right-angled Pyrex glass tube of 35 mm outside diameter. At one end of the respirator mask to be tested, at a distance of 25 cm from the respirator; the body of the FPMS is placed. The surfaces of this device were fastened in position with four bolts to retain the filter paper (Figure 2)1
- 3. Wooden Filter Paper Dust Sampler was similar to the FPMS, save for its composition. The scale drawing of this device is shown in Figure 3.
- The "Standard" Electrostatic Precipitator (Ep) was a glass model made according to the description in the U.S. Bureau of Mines Information Circular #7086. One of four of these precipitators was selected for the tests recorded in Section I. Comparison of the four precipitators is given in Section IIA.
- Elongated Model of the Electrostatic Precipitator was identical with the "Standard" with the exception that the inner collecting tube, the wire electrode, and the grid, were extended to 11 inches in length (instead of the conventional 8" length).
- 6. The Neilson Filter Paper Dust Sampler consisted of a 2-inch Buchner funnel, in the filtering surface of which was placed a Balston #50 filter paper. The device was inserted in the wall of the dust chamber and the stem attached to a controlled suction line.
- 7 & 8. Greenburg-Smith Impinger and Midget Impinger (I) are standard devices commercially available at the Mine Safety Appliances Company, Pittsburgh, Pennsylvania.

Filter Paper

The H-papers were made of asbestos especially designed to retain dusts of small particle-size and to offer low resistance to high rates of air-flow. The OR-1661-A was a cellulosic paper not yet commercially available. The other papers were obtained commercially.

The filter paper and electrostatic precipitator samples were analyzed gravimetrically and chemically, the impinger samples by the chemical method only. T was analyzed by a modification of the ferrocyanide method of Benard and Tessier2)

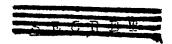
1) Courtesy of Respiratory Laboratory, University of Chicago, Chicago, Illinois.

2) Report #2, Rochester Area, Pharmacology Division, Inhalation Section.

Dygert, page 5

Procedure

The sampling devices and filtering media were tested through apertures in the sides of a 4-foot cubic chamber (see Figure 4) the atmosphere of which contained chemically analyzed concentrations of T-dusts of 2 and 20 mg per cubic meter and median particle-size 0.56%. The dust was fed into the chamber through the roof by an adjustable speed mechanical feeder onto a moving electric fan. The rate of airpsampling unless otherwise indicated was 32 liters per minute.


As a basis for the determination of comparative efficiencies of samplers and papers, Whatman #41 was selected as the reference standard. Previous work had indicated the high efficiency of this paper. The effect of the location of the sampling device was then established using this paper (Table I). The Ep and FPMS were not corrected because, variations in pepeated tests far exceeded those due to positional effects and because the FPMS was uniformly used in position X2. Position Ol (Figure 4) was selected as the reference site. Whatman Filter Paper #41 used in the wooden FPDS was always used at this site. The 7 types of filter papers and 8 types of ap aratus were then tested for relative efficiencies in the retention of T-dusts by comparison with Whatman #41 paper used in the FPDS (Table II). Tests were carried out in atmospheres containing approximately 20 mg per cubic meter in the majority of the sampling periods. Concentrations of 2 mg per cubic meter were also used for comparison.

Results

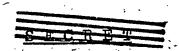
The results are divided into three parts, Sections I, IIA, and IIB, because the differences in the properties of the T-dusts used in the tests and the different groups of sampling apparatus required separate treatment.

5 W²⁴

Section I

COMPARATIVE EFFICIENCY OF 6 DUST SAMPLERS AND 8 FILTER PAPERS IN "HI-GRADE" T-ORE DUSTS

Of 6 dust-collecting devices and 8 types of filters tested in 29 sampling periods in which various combinations of these media were used, H-45 paper used in the brass FPDS proved to be the most efficient method of dust-collection.


The FPMS closely approximated the efficiency of the brass FPDS when Whatman #41 paper was used in each. In separate tests, comparative efficiency values for the FPMS were 104 and 99.5% as against 115 and 101%, respectively, for the FPDS (Table II, Sections D and E).

The elongated model of Ep exhibited a varying efficiency depending upon the dust concentrations. At dust concentrations of 2 mg per cubic meter, the elongated precipitator had an efficiency of 100% which was somewhat higher than the efficiency of the "Standard". No difference in efficiency of dust collection was noted in the two models, however, at 20 mg per cubic meter of T-dust (Table II, Sections F and D).

As shown in Table II, Sections I, J, K, L, the H-papers were superior to the other papers tested. Their usefulness, however, was limited owing to the difficulty of recovering the dust from the paper for analysis. Analytical procedure with these filters is more difficult than with cellulosic papers e.g. Whatman and OR-1661-A. OR-1661-A was inferior to Whatman #41 (Table II, Section H).

The resistance to airflow of the papers, with the exception of Whatman #42 and #50, was sufficiently low so that air-sampling rates of 32 liters per minute could be used.

Complete data are given in Table II. For convenience the relative efficiencies of the dust-sampling devices and filter papers tested for collection of T-ore are summarized below:

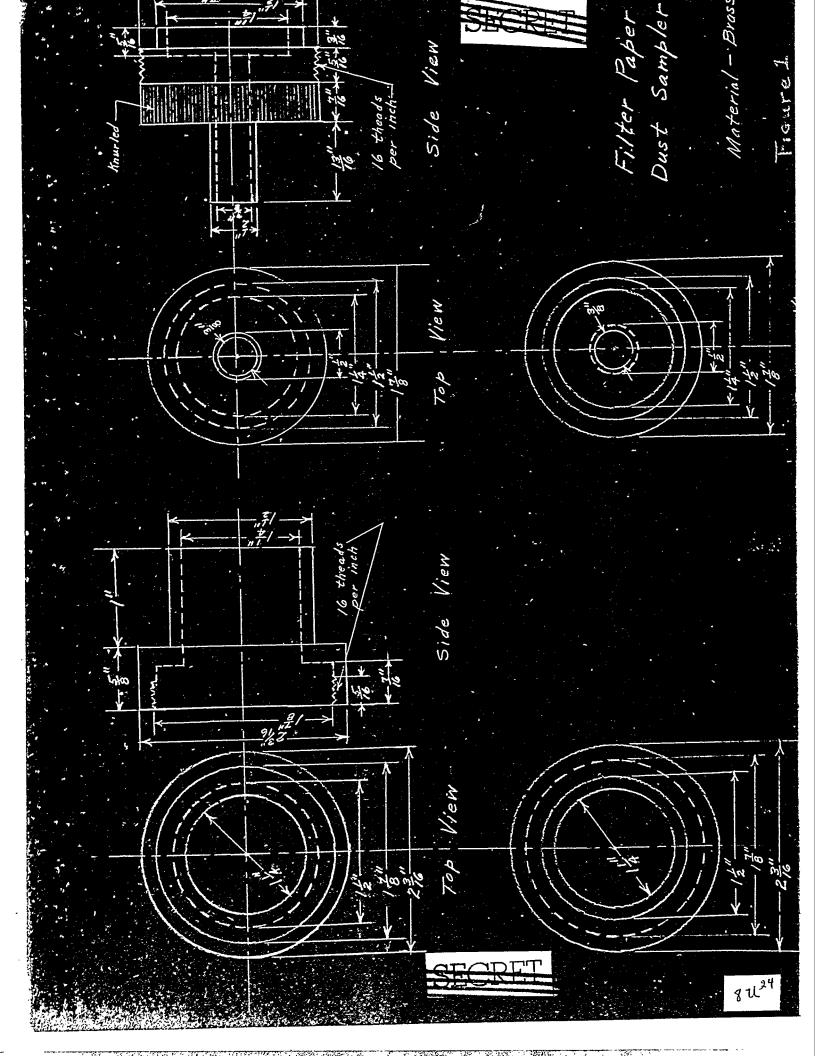
•	٠,	'a n	те.	111	 ٠.
	_	<u></u>	<u> </u>		
	t				

	Relative Per- Cent Efficiency
Brass Filter Paper Dust Sampler Filter Paper Mask Sampler Wooden Filter Paper Dust Sampler Nielson Filter Paper Dust Sampler Elongated Electrostatic Precipitator "Standard" Electrostatic Precipitator	1151 1041 1001 901 922 78
Filter Paper	*
H-45 H-42 H-51 H-49	123 114 111 108
Whatman #41 Whatman #42 OR-1661-A Whatman #50	100 98 80

COMPARATIVE EFFICIENCY OF MIDGET IMPINGER, ELECTROSTATIC PRECIPITATOR, AND FILTER PAPER

Section II

DUST SAMPLER IN SAMPLING TFA DUST


1. The results of sampling an atmosphere containing TF, dust by means of the Midget Impinger using water as the Collecting medium and by means of the Filter Paper Dust Sampler are shown in Table III. In all tests, the amounts of TF, collected by the FPDS were greater than those collected by the Midget Impinger. Moreover wider variations were observed in the amounts collected in repeated trials by the Midget Impinger than in those collected by the FPDS.

2. Results of comparative tests of efficiency (made in triplicate) of the electrostatic precipitator and FPDS in collecting TF, dust are shown in Table IV. Four glass electrostatic precipitators which had been made as nearly as possible identical but with voltage adjusted to suit each instrument, were compared to determine the variation of each instrument.

Whatman #/1 filter paper was used as the collecting medium.

2) The efficiency of this device was dependent on the dust concentration sampled. Its relative efficiency was 100 at 2 mg per cubic meter. 83 at 20 mg per cubic meter. The figure above represents the combined average of these efficiencies.

SAMPLER 1. 1. 1. K APER BRASS

Figure 2

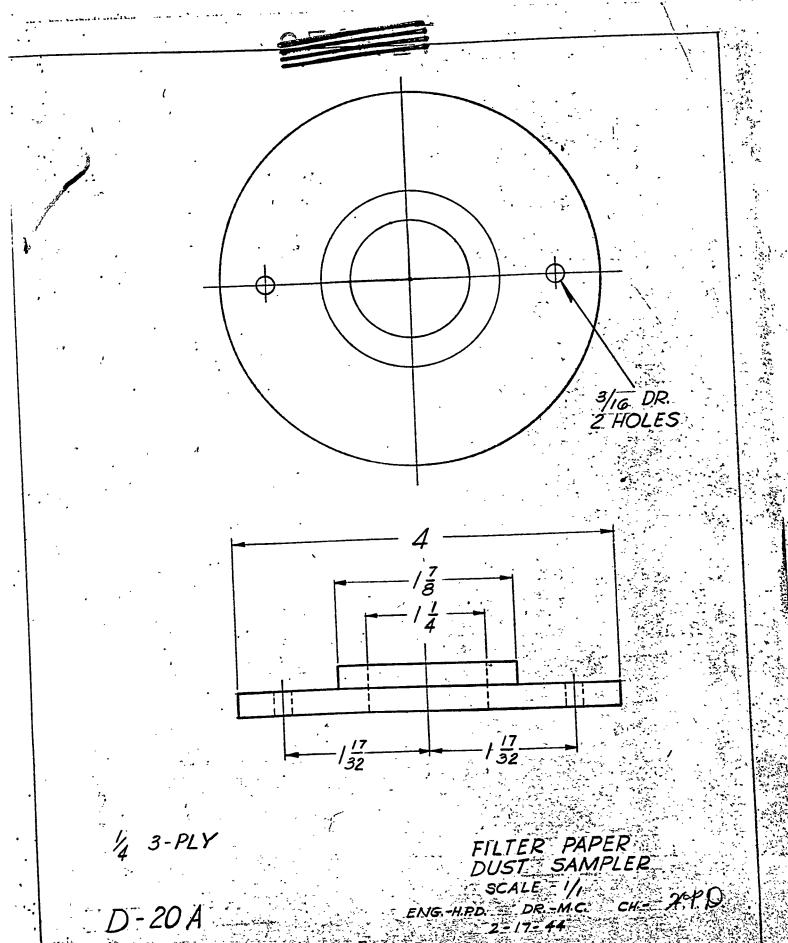
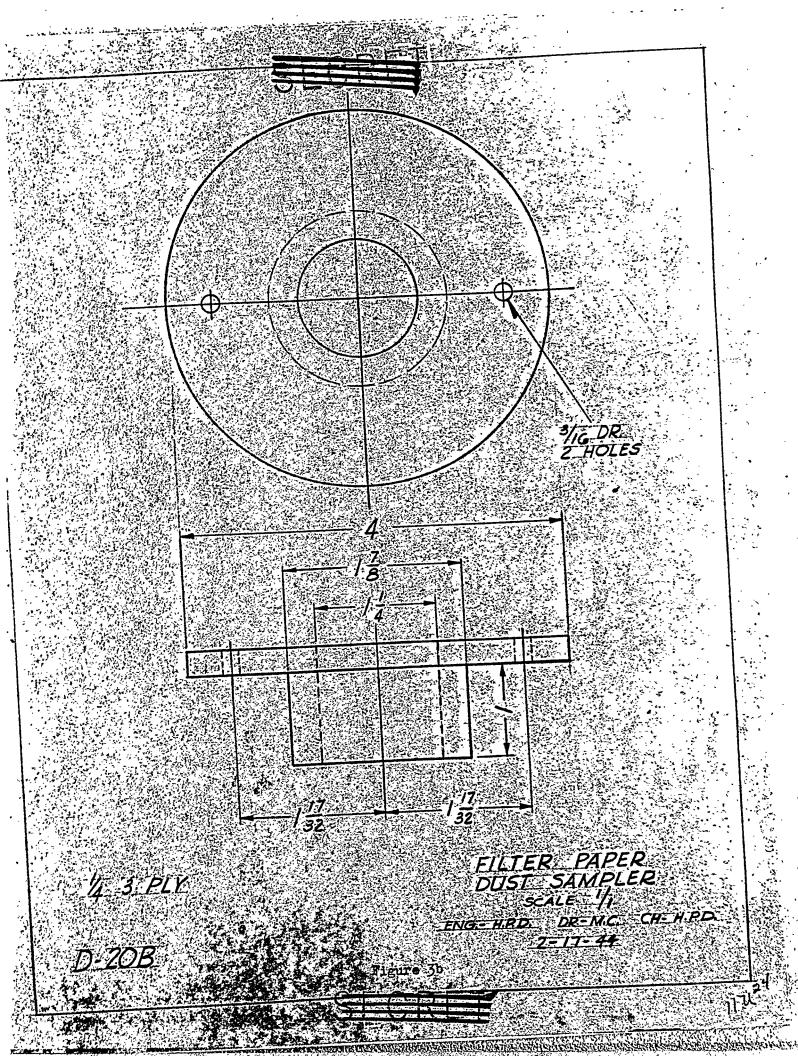
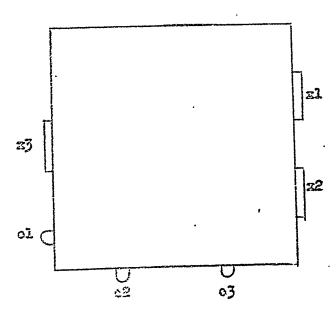



Figure 3a


10 JL

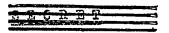

Dygert, Page 5

Figure 4

- z = positions at which respirator filter efficiencies are tested utilizing electrostatic precipitators and the filter paper mack campler. (Referred to in Table III.)
- .o = positions at which filter paper dust samplers are used in taking samples for determining chamber air concentrations. (Referred to in Table III.)

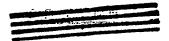


TABLE I

WEIGHTING OF SAMPLING POSITION IN CHAMBER RELATIVE TO AMOUNT OF DUST RETENTION

Campting	Wha	atman Paper	#41 Osition		
Sampling Period		ol	02	03	
		Milligrems as T per Cu			
I		14.8	16.7	15.5	
II		6.2	7.4	7.5	
III		8.6	10.4	9.8	•
	3	Per Cent Re	tention		
Ţ		100	113	107	•
II		100	119	121	
III		100		114	
	Average	<u>100</u> 100	<u>121</u> 117	114	
	Factor	1.00	0.85		77
Weighte	d for Post	ition	-	-	

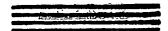
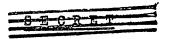
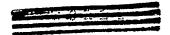




TABLE II

RELATIVE REFIGIENCY OF DUST SAMPLING APPARATUS AND OF FILTER PAPER COMPARED TO WHATMAN PUL PAPER

Ā	eoxecener ex	Test	
Sampling		Position	
Period	£3	02	03
	Whatman W1	Whatman 42	F.P.D.S.
		ms of Dust or Cubic Me	
	Contraction of the Contraction o		
IV V	13.1 9.5	9•5 9•3 5•4	9•5 9•3 Կ _• Ց
AII AI	3.3 29 . 9	29.3	5 <i>f</i> f* <i>f</i> f
-	Avorege Per Weighted fo	cont Reter r Position	ition, (Table I)
	100	101	9h •
	Combined Av	rera <i>g</i> e	97-5
	يري ومد وري ساد شده شده حدة عد	n .m .m .m	
2 Sampling	eogeredd !	Test Position	j
Period	ol Wietman 43	20	50
	Milligrams as T p	e of Dust Reserved	etained ter
X II VIII	፟፞፞፞፞፞፞፞፞፞፞፞፞፞፞ዹኇ ጛ . 0 6 . 0	3.3 3.3 3.8	
·	Average P	er Cent Ret for Position	ention, n
	100	55	
	Average	55	
			



TABLE II (Cont a)

Ç	Sampling Period	Reference Pol Vhatman 41	osition %2	•	S.,
		Milligrams	of Dust Reta	ined	
	VIII X X	4.9 5.0 6.0	5. 5. 6.	.9	
		Average Pe	r Cent Retent	ion .	
	٠	100	1:	15	
		. Average		1 5	
			an an an ≪h	•	
D	Sampling Period	Reference ol Whatman 41	Position c2 Nielson Wh F.P.D.S.	93	z2 F.P.M.S.
		Milligra as T p	ms of Dust R er Cubic Met	etained er	,
	XXVI	17.5	18.1	20.2	17.4
			e Per Cent R		
		100	S S	101	99.51)

¹⁾ Indicates values not weighted.

TABLE II (Cont'd)

H		Referenc	e	Test	
<u> </u>	Sampling		Posi	tion	
	Period.	Lo	02	03	x2
		ilia iman		Whatman 4	l F.P.M.S.
			F.P.D.S.		
				F.P.D.S.	
	•	154774	grams of Dus	t Retained	
			T per Cubic		•
	•	(Dust con	centration i	n chamber	of 2 mg
			per cubi	c meter)	
	ላየሚኖ ሃ ፕ	1.8	3.0	2.2	1.9
	VIKK	1.5	1.9 1.6	2.3	î.6
	ÄXXÄ	1.8	2.0	2.2	1.8
	41461				
			verage Per 0		ion,
		ţ	leighted for	Position	
		100	90	115	₁₀₄ 1)
		200	70		
	•			•	
~		Dadaman		Test	
F	Sampling	Referen	rce Position		
	Period .	cl		1	x 3
	2 00 200	Vha tman	41 Ep. S	Standard E	
			1		
			Milligrams o		
	•		as T per	Cubic Met	er
	ï	14.8	1	1.4	6.5
	II	6.2		5.4·	4.4
	III	8.6	_	g.o ·	6.2
	<u> </u>	13.1	1	1.2	10.4
	·Ų	9.8		7.6	8.8 2.7
	VI	3. 3 -24 . 8	7	3.9 11.0	2.7 13.8
	IIIVIX	19.3		17.0	16.5
	VIII	4.9	•	3.6	3.7
	IX	5.0		ц. ц.	5.2
	X.	. 6.0		5.5	6.5
	XXVI	17.5		13.1	15.1
•			Average Pe	er Cent Ret	ention
	•	_	_		
	•	100		83	83

¹⁾ Indicates values not weighted.

TABLE II (Cont d)

		TABLE II (C	me, m				
			<i>™</i> A	<u>.</u>			
£		Reference	Test	į.			
937	Sampling		Position		_		
	Period	01	Z]		32		
	rerroa	Whatman 41 Ep	Standard Ep.	Long F.P	M.S.		
		MIE OHRE AT TH	, stemacra —p	,			
			•	Dodoinod			
	•	M111	igrams of Dust	vecarnea			
	•	as	T per Cubic Me	Bror.			
•		(Dust concentrat	ion in chamber	air 2 mg pe	r		
		•	cubic meter)			
	eres w'r) W	1.8	1.6	1.8	9		
	IIIXX				6		
	xxia	1.5	1.0		8		
	XXA	1.8	1.4	1.7			
		A	verage Per Cen	t Retention			
		300	78	300	104		
		300	,0	200			
	•						
				_			
丑		Reference	l'e	ន់			
===	Sampling		Position	•			
	Period	ol	02	o 3			
	Larion	Whatman 41	OR-1661-A	OR-1661	-A		
		#1157 0 mort 2 -4-4	40. 040.0 -	-			
	•	Milligrams of Dust Retained .					
	•	MI.	TIETEME OI DOE	Matan			
			as T per Cubic	Herer.			
		_					
	XI	11.7	7.8				
	KII	6:1	· 5.7 6.6	6.2			
	XIII	· 6.9	6.6	6.7			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•					
		A-	verage Per Cent	Retention			
			as T per Cub:	lc Meter			
			Go a por				
		7.00	77	87			
	,	100	73	O.			
	•			do.			
		Combined .	Average	80			
7		Reference		Test			
I	a	1010101010	Position				
	Sampling		02	٥3			
	Period	ol					
		Whatman 4	1 · 2=42	Teréc			
			•				
		'Mi	lligrams of Du	st Retained			
			as I per Cubi	c Meter			
	es trev	Ø A	10.2	11.4			
	XIV	8.0	14° t				
	XV	10.8					
	XYI	15.2	19.6		. Nota-		
		Av. Per Cer	nt Retention as	r ber onor	C me cer		
		٠	weighted f	or position			
		100	111	117			
		Comb	ined Average	114			

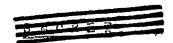

24 7 U

TABLE II (Cont'd)

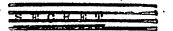
	THOMA 25 COO	120 07		
,	* 6	Test	•	
J .	Reference	sition		
Sampling	ol	02	o3 ·	
Poriod	Knatman 41	H-45	H-145	
		•		
	M4734@Y0M	e of Dust Re	tained	
	ית ווי פסידונו	er Cubic Net	er	
የሆኖቹ ኛ	5.2	6.9	7.8	
XVII	¥.5	6.0	6.3	
XAIII	-			
	Average P	er Cent Rete	ention	
	as T T	er Cubic Met	er	
	Weight	ed for Posit	ion	
			3.50	•
	100	116	129	
			3.07	
•	. Combined	i Average	123	
		•		
•				
	,	Te	, a &	
K	Reference		85	
Sampling		osition	03	
Pariod	03	H-713 · 05	H_Ti9	
	Whatman 41	D-07	- · · · ·	
	****	s of Dust Re	tained	
·	. Milligran	er Cubic Met	er	
	28 7 1	Jer ogoro 100		
	57 G	22.2	22.2	
XX	17.8			•
	Por Cont Rete	ention as T	per Cubic Meter	
•	-C1 00210 11011	Weighted for	r Position	•
		J		
	100	107	110	
			201	
•	Combine	d Average	308	,
		,		
			-	
	,	m _o	វន	
	Reference		:B 0	
Sempling	•	Position o2	03	
Period	01	62 H- 51	H-51	
•	Whatman 41	شرحید		
	133 7 7 3 mg	rams of Dust	Retained	
•	nitrig:	F per Cubic I	leter	
end of B	13.5	16.6	18.1	
· XXI		30.0	28.0	
IXII	Amaraga Par	Cont Retent	ion as T per Cubic l	ever
	ES CIEBO 301	Weighted f	OL. LOST PTOM	
•	100	108	114	
	. Combi	ned Average	111	
	•			1

, 8 W 24

TABLE II (Contad)

N		Reference	Tes	t
-	Sampling	P	osition	
	Period	. 01	02	03
	202200	Whatman 41	H-17	H-18
		Milligrams	of Dast Re	tained
	• •		er Cubic Me	
	1	5.67	4.93	5.60 4.42
	2	5.67 5.64	4.93 5.14	4.42
	2 3	3.27	-	2.79
• ;	•	Average F Weig	er Cent Ret	ention sition
		.100	· 76	77

TABLE III


COMPARISON OF FILTER PAPER DUST SAMPLER (F.P.D.S.)
AND MIDGET IMPINGER IN SAMPLING OF CHAMBER AIR
CONTAINING TEN

Median Particle-Size Ng = 0.84 (g 2.501)

	D.S.		IMPINGER Amount TFh
Volume of Air Sampled	Amount TF4 Collected	Volume of Sampled	Collected
cu m	ng/cu n	cu m	mg/cu m
0.200 0.200 0.200 0.140 0.150	53.0 78.0 56.6 46.6 53.0	0.020 0.020 0.020 0.014 0.014	37.1 70.8 29.6 43.5 31.5

1) Mg represents the median of the particle-size distribution, which is approximately the geometric mean. For dusts, the Mg value is expressed in micra, M. It is obtained by reading off the 50 per cent size from a logarithmic-probability graph constructed from the size-frequency of the particles, e.g. Mg = 0.6M states that the median diameter of the particles sampled is 0.6M. 50 per cent of the samples are equal to or less than this value.

of is a measure of the dispersion of particle diameters from the geometric mean. It is computed from the logarithmic-probability graph according to 84.13 per cent size = G. The larger the value the greater the spread of particle-size. For a more extensive discussion, see Hatch & Choate, J. Franklin Inst., 207, 369, 1929.

TABLE IV

COMPARISONS OF EFFICIENCIES OF FILTER PAPER DUST SAMPLER (F.P.D.S.)
AND I; GLASS ELECTROSTATIC PRECIPITATORS (Ep) IN CHAMBER AIR CONTAINING
TF,

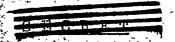
Median Particle-Size Mg = 0.8x 0g = 2.5

Type of Sampling Apparatus	Volume of Air Sampled	Total Sample Collected (chem. anal.)	Weight of Sample (chem. anal.	
,	ca w	mg	mg/cu m	per cent
F.P.D.S.	0.排	7.48	17.0	100.0
Ep #1	0.32	4.29	13.4	78.0
Ep #2	0.32	3.23	10.3	60.5
Ep #4	0.32	4.57	14.3	84.0
F.P.D.S.	0.41	3.00	7.3	100.0
Ep #1	0.32	1.33	4.2	57.0
Ep #2	0.32	1.52	4.8	65.3
Ep #4	0.32	1.63	5.1	69.6
F.P.D.S.	0.49	3.54	7.2	100.0
Ep #1	0.32	1.94	6.1	84.3
Ep #2	0.32	1.67	5.2	72.5
Ep #4	0.32	1.49	4.7	64.8
F.P.D.S.	2.00	12.10	6.1	100.0
Ep #3	1.28	5.11	4.0	
F.P.D.S. Ep #3	1.62 0.96	4.60 1.98	2.9	100.0
F.P.D.S.	1.16	3.23	2.8	100.0
Ep #3	0.83	1.70	2.1	75.0

Average Efficiency (3 determinations)

. Order	Per Cent
F.P.D.S. 1	100.0
100 / 110 / 120 /	73.1
Ep #3 3	. 72 . 8
Ip #4. 4	70.9
Ep #2 5	66.1

21 U 24



COMPARISON OF GLASS ELECTROSTATIC PRECIPITATOR (Ep) AND THE GREENBURG-SMITH IMPINGER (I) IN SAMPLING CHAMBER AIR CONTAINING TO₂F₂

Median Particle-Size, Mg 0.6408 = 2.24

Type of Dust-		Weight of	
Sampling	Air	Sample	Weight of
Apparatus	Volume	(Chem. Anal.)	Sample
	cu m	mg	mg/cu m
Ep #1	0.32	1.98	6.20
Ep #3	0.32	2.08	6.50
I	0.29	2.09	7.20
Ep #1	0.32	1.60	jt jijt
Ep #3	0.32	1.00	3.13 .
	0.29	2.09	7.20
Ep #1 Ep #3	0.32 0.32 0.29	3.00 2.70 3.52	9.38 8.55 12.10

Dygert, page 19

Each glass precipitator was less efficient than the FPDS using Whatman #41 paper as the filtering medium. The average efficiency of the glass electrostatic precipitators operating at approximately 20,000 yolts was 70 ± 4% compared to the efficiency of the FPDS as 100.

Section IIB

COMPARATIVE EFFICIENCIES OF THE GREENBURG-SMITH IMPINGER AND THE ELECTROSTATIC PRECIPITATOR IN COLLECTING TO 2F2 DUST

The results of the comparative testing of 2 glass electrostatic precipitators and a large Greenburg-Smith Impinger, using water as the collecting medium, showed that the efficiency of the impinger was equal to or greater than that of the Ep in collecting TO₂F₂, an extremely soluble T-dust (Table V).

Conclusions

The Filter Paper Dust Sampler, used with a suitable filter paper, is the device of choice for sampling T-dusts in atmospheres. This conclusion is based on: (1) the greater efficiency of the FPDS compared to the glass electrostatic precipitator (Table IV), or the Midget or Greenburg-Smith Impinger (Table III, V); (2) the ease of sampling; (3) accuracy and ease in weighing; (4) ease and speed of analysis; (5) uniformity of results; (6) inexpensiveness of construction and operation.

H-45 paper used with the FPDS showed the greatest efficiency of all papers tested. The usefulness of this paper was limited by the difficulty encountered in analysis of the absorbed dust so that, practically, Whatman paper #41, employing the brass FPDS, proved superior when chemical as well as gravimetric analyses of T-dust are desired.

igned T. I, Lyay.
H. P. Dykert

22 November 1944

3 F 6 F 1 1